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TECHNICAL PAPER

THE CORROSION PROTECTION OF 2219-T87 ALUMINUM BY

ORGANIC AND INORGANIC ZINC-RICH PRIMERS

INTRODUCTION

The space transportation system (STS) solid rocket boosters (SRB's) are reusable solid motors

that provide the major source of thrust during the first 2 min of launch. After separation and parachute

deployment, the motors splash down into the Atlantic Ocean and are recovered. Recovery and towback

operations usually take 24 to 36 h. During this period, the aggressive seawater environment causes

severe corrosion of exposed bare metal hardware. The SRB aft skirt experiences the worst damage

because it is completely submerged during the first several hours after splashdown, when the boosters

are in the vertical position. The aft skirt remains partially submerged during towback. Aggravating aft

skirt corrosion is a galvanic effect driven by coupling to the thrust vector control (TVC) system

(comprised primarily of stainless steel and titanium) and the redesigned solid rocket motor nozzle
(which contains carbon).

The aft skirt is constructed from aluminum alloy 2219-T87. This high-strength aluminum alloy is
age hardened primarily by precipitation of copper aluminide (Cu-A12), which is significantly more noble

than the aluminum matrix, making the alloy susceptible to pitting corrosion by a microscopic galvanic
mechanism. This dual galvanic effect makes the aft skirt extremely susceptible to pitting corrosion.
Areas behind the TVC system are severely affected.

The current protection system for the aft skirt includes a chemical conversion coating, followed

by a chromate inhibited epoxy primer and an epoxy topcoat. This system should provide excellent pro-
tection, particularly if the coating is not damaged. However, some damage does occur and is believed to

be the result, in part, of shards of carbon cloth phenolic from the nozzle penetrating the coating. These

tiny needles not only compromise the coating system, but result in contact of a very noble material with

the aluminum structure. When the booster is in the vertical position, the aft skirt is under approximately
100 ft of seawater, at three atmospheres pressure. This pressure drives seawater into defects in the coat-

ing, and the available chromate is apparently insufficient to prevent pitting attack.

Corrective action to reduce the pitting in the aft skirt has included the use of flame-sprayed zinc,
attached zinc anodes, and diver-installed zinc anodes. These efforts have met with limited success

because the area of available zinc is insufficient to provide complete protection, and the zinc currently in

use is not ideally located to provide protection where it is needed the most, i.e., behind the TVC system.

These problems may be resolved if the proposal to apply zinc-rich primer to the interior of the aft

skirt is successful. The zinc in the primer protects by acting as a sacrificial anode rather than by chro-

mate inhibition. If the zinc-rich primer is compromised, as long as the affected area is not too large, this
sacrificial protection should be adequate to protect the exposed aluminum. The problem is that zinc-rich

primers are intended primarily for use on steels, where the difference in electrochemical potential is on

the order of 500 mV. The electrochemical potential of aluminum is roughly midway between that of zinc

and steel. Whether the zinc in the zinc-rich primer will provide sufficient galvanic protection to 2219

aluminum is the question that was addressed by this work. To that end, a comparison was made between

the organic zinc-rich primer currently used on SRB steel hardware and an inorganic zinc-rich primer



which haddemonstratedsuccessin theKennedySpaceCenter(KSC)seacoastenvironment.Thediffer-
encebetweenthetwo typesof coatinglies in thebinder.Theorganicprimerhasanepoxy binder,while
the inorganic primer hasanethyl silicatebinder.Thetypeof binderhasa significanteffect on primer
performance.This effecthasbeeninvestigatedonsteel,1-3butnot on aluminum.Electrochemicalcom-
parisonof the inorganicprimer (AmeronTM) to the organic primer (Rust-Oleum TM) currently used on the

SRB should provide a means for determining which primer is likely to provide the best galvanic
protection for 2219-T87 aluminum.

EXPERIMENTAL PROCEDURE

Flat plates, 10.2 by 15.2 cm (4 by 6 in), of 2219-T87 aluminum alloy were grit blasted and

cleaned with alcohol and acetone. Two plates were coated with approximately 0.08 mm (3 mils) of

inorganic zinc-rich primer 21-9, manufactured by Ameron Co., and two more were coated with organic

zinc-rich primer manufactured by the Rust-Oleum Corp. One each of the coated plates was clamped into
a flat corrosion cell manufactured by EG&G-PARC and exposed to 3.5-percent sodium chloride

(Na-CI), and corrosion data were obtained over a period of 21 days. Silver/silver chloride reference elec-
trodes were used in all cases.

Both electrochemical impedance spectroscopy (EIS), an alternating current method, and the

polarization resistance (PR) technique, a direct current technique, were employed in this investigation.

The EG&G-PARC model 378 ac impedance system was used for all corrosion measurements. For the
EIS measurements, data were taken in three frequency ranges. The first two ranges, beginning at 0.001

and 0.1 Hz, respectively, were obtained using the fast Fourier transform technique. The data in the third

range, 6.28 to 40,000 Hz, were collected using the lock-in amplifier technique. The sequencing was per-

formed using the autoexecute procedure, with all data merged to a single set for each run. After collec-

tion, these data were processed and analyzed by computer using the model of figure 1. The same com-

puter also controlled the equipment. The development and selection of the model of figure 1 has been

discussed previously. 4 Values for each of the circuit components in figure 1 were treated as parameters

in the nonlinear ORGLS 5 least squares program, which automatically adjusted these parameters to

obtain a best fit to the observed Bode magnitude data (log impedance versus log o9, where

o9 = 2x x frequency).

Data for the PR technique were collected using the same instrumentation with the EG&G-PARC

model 352 software, which was developed especially for dc measurements. Instrumentation developed
by EG&G-PARC automatically corrected the data for IR drop during the scan. The potential applied to

the specimen during the scan was varied from -20 to +20 mV on either side of the corrosion potential

ECO_R, and the data points (current and potential) were recorded in 1/4-mV increments. The PR data

were analyzed using the program POLCURR. 6 The theory for the PR technique has been described

previously. 7 In this work, all values of the corrosion current (IcoRR) were obtained using the PR tech-

nique.

RESULTS AND DISCUSSION

Organic Primer

EIS measurements showed an impedance that gradually increased over the period of the meas-

urements. This result is just the opposite of what is normally observed (i.e., the impedance decreases



with time). The charge transfer resistance (Rt)-time curve is given in figure 2, showing a continually

increasing value of Rt. The same trend is observed in figure 3 for the pore resistance (Rp)-time curve,

which changes from 0.6 kilohms (kf_) at the onset to a value of 7.4 kf2 after the 21-day exposure. The

average value of Rp was 4.0 kfl. The corrosion current (/CORa)-time curve in figure 4 shows a con-

tinually decreasing value of ICORR during the period of measurement. The average value of ICORR was

0.35 #A/cm 2, which corresponds to an average corrosion rate of 0.2 mils per year (mpy), assuming that

only the zinc is corroding. The coating capacitance Cc-time and double layer capacitance Cat-time curves

are shown in figures 5 and 6, respectively, showing sharp drops in capacitance during the 5 days of
exposure, with slowly decreasing values thereafter. This trend would also contribute to a steady increase
in impedance, as would the increasing values of the resistance.

Capacitances may be expressed by the following equation:

C=KA/4rS. (1)

Here, K is the dielectric constant, A is the effective area of the condenser, and S is the thickness of the

dielectric layer. Assuming that A and S do not greatly change, the decrease in capacitance could be

explained by the continual replacement of the initial dielectric medium with high dielectric constant,

such as water, with a medium with lower dielectric constant, such as zinc hydroxide in this case, which
is consistent with a gradual decrease in porosity.

Inorganic Primer

Trends in the results were the same as those for the organic primer, except that measured

impedances were much lower. The Rrtime curve is shown in figure 7 and the Rp-time curve in figure 8.
The Rp values began at only 1.2 f2 and ended at 132.3 f2. these values are much smaller than the

corresponding values of 0.6 kf2 and 7.39 kf_ for the organic primer, indicating a very high porosity and

associated diffusion in the inorganic primer. The lcoRR-time curve is shown in figure 9, dropping from

35.6 _A/cm 2 to a value of 5.8 _A/cm 2 in 21 days. The average value of lCORR is 9.0 _A/cm 2. This is

much higher than 0.35/.tA/cm 2 obtained for the organic primer. Both values are primarily the result of

zinc corrosion. The large values in the inorganic primer are probably the result of the diffusion of the

medium to areas surrounding the 1-cm 2 area actually exposed to the medium, with areas much larger
than 1 cm 2 contributing to the corrosion current. Evidence on the coated plate indicated that diffusion of

the medium through the primer-coated layer extended to a radius of approximately 4.5 cm (1.75 in)

beyond the 1-cm 2 exposed area. Figure 10, which compares the organic and inorganic primer-coated
panels after 21 days of exposure, illustrates this effect. The C:time and Cat-time curves are shown in

figures 11 and 12, respectively, showing the same trends as those for the organic primer, with the same

implications regarding effects on the total impedance. Comparison of the Rp-time curves for the organic

and inorganic primers is made in figure 13. This figure illustrates the much greater porosity of the

inorganic primer. A similar comparison for the IcoRR-time curves is made in figure 14, showing the

much higher values of ICORR in the case of the inorganic primer, a result of the high diffusion rate of the

medium through this porous primer.

Galvanic Current Measurements

Galvanic current measurements were made with a flat cell especially designed for such purposes

by EG&G-PARC. Aluminum alloy 2219-T87 plates coated with each primer were clamped into one end

3



of the cell, with a bare, grit-blasted aluminum plate at the other end. The areas exposed to the medium
were 1 cm 2 for both plates. Current measurements were made individually on each primer-coated plate.

Currents were measured using the EG&G-PARC model 352 software over a 24-h period, and the mean

current for each primer was calculated. The mean current for the plate coated with organic primer was

37.9/zA/cm 2, while that for a plate similarly coated with inorganic primer was 23.7 #A/cm 2. The lower

value for the inorganic primer might be due to a surface more sparsely coated with zinc, as evidenced by

the high porosity. However, both currents were relatively high, with the zinc-rich primer acting as the

anode. The potentials displayed by both primers were very close to that reported for pure zinc, namely
-1,050 mV (SCE), s although that for the organic primer was a little more positive. This may be a result

of the lower porosity displayed by the organic primer. At the end of the 24-h galvanic test, there was

some evidence of corrosion on the bare aluminum plates for both the organic and inorganic primers,

indicating that corrosion protection was not complete.

CONCLUSIONS/RECOMMENDATIONS

This work has demonstrated the feasibility of using zinc-rich primers for galvanic protection of

the SRB aft skirt. Electrochemical galvanic corrosion testing of the zinc-rich primers coupled to 2219-

T87 aluminum showed that the zinc was anodic to the aluminum and that substantial protective currents

were generated. Complete protection of the aluminum was not realized, but may be achieved by using a

higher anode-to-cathode ratio.

EIS data have further demonstrated that the inorganic zinc-rich primer will provide superior

protection, due to the high porosity and resulting high corrosion current generated during the first several

days of immersion. The corrosion current during the first 3 days, which represents the most critical

period for aft skirt protection, is between 1 and 2 orders of magnitude higher for the inorganic zinc-rich

primer. The higher porosity undoubtedly contributes to a higher apparent anode-to-cathode ratio, which
is preferred for cathodic protection.

Based on these results, it is recommended that additional testing be conducted to verify the effi-

cacy of using zinc-rich primers in the aft skirt. This work should simulate actual aft skirt conditions,
including coupling of coated aluminum to stainless steel and carbon cloth phenolic. A chromated-epoxy

control should be included to demonstrate that the cathodic protection provided by the zinc-rich primer

is superior to the chromate-inhibited protection provided by the epoxy primer.

- 4
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Figure 10. Organic (top) and inorganic zinc-rich primer coated 2219-T87 after 21 days
exposure to 3.5-percent Na-C1.
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